Math 5 Lesson 19

  1. Classwork
    1. Decimal Fractions. Rational and Irrational Numbers

      Definition: A rational number is a number that can be written as a fraction of two integer numbers $$p/q$$, where $$q≠0$$.

      Definition: Any real number that is not rational is irrational. Irrational means that it can not be written as a ratio or two integers (rational number).

      Examples:
      π = 3.14159265358979323846264338327950288419716939937510…
      e = 2.71828182845904523536028747135266249775724709369995…

      Definition: A set is countable if you can count the elements

      Theorem: The set of rational number Q is countable.

      Proof: 1. Convert the following fractions to decimals: a) 1 111 b) 3 7 c) −1 11 d)c) 5 9 e) 3 13 f) 2 5 g) 6 11 2. Convert the decimal fractions to the regular ones. 1 a) 0.251 b) −0.23123 c) 45.53 d) 2.5634 e) −1.32
  2. 1.2 Review 3. Solve a)|3x + 5| + 2x = 4 b)| − x − 4| − 3x = 2 4. Solve a) −3(2a + b) − 4(b + a)(4 − 3a) b) 2(4a + −3b) − 2(4b + a)(4 − 3b) 2 2 Math 5 Lesson 19 Homework 2.1 Decimal Fractions. Rational and Irrational Numbers 1. Convert the following fractions to decimals: a) 3 111 b) 1 8 c) −4 7 d)c) 5 6 e) 7 15 f) 2 7 g) 5 17 2. Convert the decimal fractions to the regular ones. a) 0.165 b) −0.3525 c) 13.74 d) 2.1212 e) −1.21 2.2 Review 3. Solve a)|4x + 6| − 3x = 5 b)| − 4x + 2| − 4x = 1 4. Solve a) −3(5a + 2b) − 4(3b − 2a)(3 − 2a) b) (7a + −7b) − 2(4a + b)(1 − 6b) 3